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The main results of recent computer simulations of spinodal decomposition in 
various systems are summarized and compared. Both Monte Carlo simulations 
of the kinetic Ising system and molecular dynamics simulations of phase 
separation in Lennard-Jones systems yield power law growth for the coarsening 
of the decomposition pattern and scaling of the spinodal peak of the structure 
factor. These similarities and also distinct differences of the dynamics of one- 
and two-component systems and of the different simulation techniques are 
discussed. 
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1. I N T R O D U C T I O N  

Spinodal decomposition is the decay process of spatially homogeneous 
states in the unstable part of the phase diagram of certain systems. The 
dynamics of the decomposition process displays a variety of physically 
interesting features such as different growth regimes of the formed clusters 
and scaling behavior of the pertinent structure factor. 

Experimentally, spinodal decomposition is mostly studied in binary 
systems,(l) such as binary alloys (2) or fluids, (3) which have been quenched 
into the miscibility gap of their phase diagram. The relevant time scale for 
the phase separation process is on the order Of fractions of seconds in 
binary liquids and on the order of minutes or even many hours in metallic 
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alloys. The theoretical description is successfully given in the framework of 
the generalized diffusion equation of the Cahn-Cook theory, important 
contributions coming, e.g., from Langer and coworkers. (1~ A somewhat 
more general ansatz is due to Binder and coworkers, (4) who treat spinodal 
decomposition within a nucleation theory. A recent summary of spinodal 
decomposition in binary systems is given in Ref. 5. 

Reasonably different is the situation for one-component systems, such 
as a van der Waals-like liquid quenched below the critical point into the 
unstable region of its liquid-gas phase diagram. Spinodal decomposition in 
this system takes place within several picoseconds; a diffusion equation is 
no adequate description, and instead one may, e.g., treat the equations of 
fluctuating hydrodynamics. (6) Because of the short times involved, no 
laboratory experiments on these systems are available yet. 

But, besides the laboratory experiments, there is another increasingly 
important source of physical information concerning phase-separating and 
other physical systems. These are studies by numerical simulations of the 
involved dynamical processes. Two major techniques are used in this 
context, the Monte Carlo simulation technique and molecular dynamics 
simulations. 

It is our aim in this paper to summarize the special features of Monte 
Carlo (7) and molecular dynamics simulations (s) of spinodal decomposition. 
To a certain extent it appears, as if both dynamically quite different 
techniques would yield similar results for the different physical systems 
concerning, e.g., simple power laws for the growth of the pertinent decom- 
position patterns and scaling relations for the spinodal peak of the time- 
dependent structure factor, or equivalently of the cluster part of the radial 
distribution function. 

We will summarize the results of molecular dynamics simulations of 
the one-component system in Section 2 and those of the Monte Carlo 
simulations of the kinetic Ising model in Section 3 of this paper. In Section 
4 we analyze and discuss the obtained results. 

2. MOLECULAR DYNAMICS S IMULATIONS 

The molecular dynamics (MD) simulation technique is the direct 
numerical integration of Newton's equations of motion for a given number 
of particles. These particles are free to move in a specified cell according to 
their mutual interactions. Details of the numerical method are described in 
Refs. 9 and will not be repeated here. 

Molecular dynamics simulations are best suited for the direct investiga- 
tion of time-dependent processes since they yield the numerically correct 
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time evolution of the complete system. For long-time studies of large 
systems (i.e., several thousand particles) one needs highly precise fast 
integration routines, which are available but nevertheless require a quite 
considerable amount  of computer time. This may be one of the reasons 
why relatively few molecular dynamics simulations for phase separation 
processes in physical systems have been reported so far. However, recently 
molecular dynamics simulations have been performed to study spinodal 
decomposition in a one-component Lennard-Jones system, in which the 
atoms were free to move in three (~~ or in two dimensions. (8) 

Since the results of the simulation of the two-dimensional system are 
by far more complete than those of the three-dimensional one and since 
furthermore most of the essential results are independent of dimensionality, 
we restrict ourselves for the purpose of this paper to a brief summary of the 
results for the two-dimensional system (see Ref. 8 for the details). These 
results have been obtained in various simulations for atoms interacting by a 
Lennard-Jones  potential 

~( r )  = 4e r - r ' 

where r is the interatomic separation and c,o are the Lennard-Jones 
parameters. One can divide the molecular dynamics computer experiments 
of Ref. 8 into two categories according to which thermodynamic parame- 
ters have been fixed during the respective simulation. In all cases the 
atomic density was constant corresponding to the value of the critical 
density for l iquid-vapor coexistence in Lennard-Jones systems. Addition- 
ally, in some of the simulations the atomic velocity distribution was 
renormalized every time-step in order to fix the average system temperature 
to a given value below the critical temperature. These are the constant 
temperature simulations. If the velocity renormalization is not performed, 
appropriate solution of Newton's equations requires time independence of 
the total energy, i.e., one performs constant energy simulations. In both 
kinds of molecular dynamics simulations spinodal decomposition has been 
observed. In the left-hand column of our Fig. 1, we reproduce for later 
comparison to Monte Carlo results some of the snapshot pictures of Ref. 8. 
These pictures show the atomic configurations for the constant temperature 
simulation at the times which are indicated at the respective figures. In Ref. 
8, a detailed analysis of the numerical data has been reported and it has 
been concluded that in all simulated situations the observed phase separa- 
tion process could be devided into two main time regimes, the first of which 
was completed as soon as the local density extremes reached the respective 
values of the gas and liquid density. The second time regime was still not 
completed as the simulations were stopped. For this regime, growth laws for 
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Fig. 1. Snapshots of the cluster growths pattern obtained from molecular dynamics (left 
column) and Monte Carlo version I (right column). Each pair of snapshots is chosen to have 
equal mean cluster radius R. 

the average cluster size R(t) have been obtained and shown to be in 
agreement with theoretical predictions. For the details of the calculation 
compare Ref. 8. Particularly it was shown, that R(t) o~ tl/2 for the constant 
temperature and R(t )~- t  1/3 for the constant energy simulations. The 
theoretical analysis (8) shows that these growth laws are the same in two and 
three dimensions. 
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Additionally, a coarse-grained scaled radial distribution function could 
be obtained by the relation 

C ( X )  = g(X,t) ,  X = r / R ( t )  

Here, g(r, t) is the cluster radial distribution function which was calculated 
from the full distribution function by averaging over radial intervals greater 
than the period characteristic of the atomic short-range order. The Fourier 
transform of g(r, t) yields the spinodal peak of the time-dependent structure 
factor S(k, t). In Ref. 8 it was demonstrated that g(x, t) is time invariant 
within the above-mentioned growth regimes in the phase separation pro- 
cess. 

Thus, in the molecular dynamics simulations (s) two results have been 
obtained (besides others not mentioned here): (i) the growth law dynamics 
of the average cluster size and (ii) scaling of the cluster radial distribution 
function, i.e., of the Fourier transform of the spinodal peak of the time- 
dependent structure factor. 

3. MONTE CARLO SIMULATIONS 

Monte Carlo (MC) techniques are by now a standard method to 
investigate properties of systems in thermodynamic equilibrium. For a 
review see, e.g., the book by Binder. (10 In this paper we are interested in 
applications of MC methods to determine dynamical features of phase- 
separating systems. We therefore discuss briefly the stochastic nature of the 
time evolution of MC systems. 

In MC simulations successive configurations of a simulated many- 
particle system are generated by changing the positions of usually one or 
two particles according to the probability W(x~ ~ x~,). The probability for 
such a move depends on the pertinent change of the energy 

A E = E ~ , - E ,  

where E~ symbolizes the energy of the system with the configuration x,. W 
is chosen such that time averages over successive configurations converge 
to the correct thermodynamic equilibrium values. However, this require- 
ment does not determine W uniquely. Two commonly used choices are 

W(x. - ,  e-BA /(1 + e (a) 

and 

W(x~-~x~,)~ ( e-~E, AE >0  (b) 
1, otherwise 

The intrinsically stochastic dynamics of the MC method is the reason why 
the sequence of generated configurations does in general not correspond to 
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a true physical time evolution, when the latter is governed by deterministic 
kinetic equations. (~2) On the other hand, there are physical systems in 
which the MC kinetics may be assumed to mimic correctly the true time 
evolution. An example is the process of spinodal decomposition in binary 
alloys under the assumption that the pairwise exchange of nearest-neighbor 
(nn) atoms dominates the kinetic properties. In this particular case the 
binary alloy problem maps onto the kinetic Ising system with Kawasaki 
dynamicsS ) MC simulations for this system have been performed by 
Lebowitz and coworkers and the results have been presented in a series of 
papers. (7~ One of the main results is the dynamic scaling of the time- 
dependent structure factor S(k,r) in the late-time regimes of the various 
simulations 

with 

K(~') oc 'r-a 

Here, the constant a depends on the temperature and on the concentrations 
c A and c a of A and B atoms in the binary alloy. Note that ~- is the MC 
analog of time in units of MC steps/atoms (MCS/A). For later compari- 
son we quote the values of the simulations for a system with simple cubic 
lattice: 

a=0 .25  for TIT c=0.59 and c A = 0 . 5 = c  B 

(a is supposed to be independent of the dimensionality d of the simulated 
system). 

In order to compare more directly the results of MC simulations with 
those obtained using the molecular dynamics method described in the 
previous section, we performed a series of MC simulations for the dynamics 
of spinodal decomposition of a lattice gas system, which simply can be 
mapped on the equivalent binary alloy by regarding occupied/vacant sites 
as A/B atoms. 

We studied a system of 99 • 99 lattice sites on a triangular lattice and 
a particle concentration c = 0.45, i.e., we simulated the motion of 4410 
atoms with periodic boundary conditions. The concentration of 0.45 gives 
approximately the same ratio of fluid-to-gas phases as in the MD snapshots 
(left column of Fig. 1) and is slightly below the site percolation threshold of 
0.50 for this lattice. For the transition probability W we chose the form (b) 
and assumed nn interactions, contrary to the MD simulations, but as in the 
alloy system. 

We tested three MC versions differing only in the vacant sites avail- 
able for the randomly chosen particle to be displaced: (I) only nearest- 
neighbor vacancies available, (II) all vacancies available with the same 
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probability, (III)  straight "flight" in one of the six nearest-neighbor direc- 
tions until stopped by the next particle on this path. 

Version (I) is identical to the MC kinetics used in the binary alloy 
p r o b l e m F  ) Version (II) has been used, e.g., by Leamy, Gilmer, and 
Jackson (13) to study the static properties of the l iquid-gas interface in the 
Ising model. Version (III)  should not be taken too seriously, since it does 
not reproduce the correct static properties due to the correlations built in 
by the condition "until stopped . . . .  " It is only included as an extreme 
case for the comparison of different MC dynamics. 

For our simulations we always used completely random start configu- 
rations corresponding to T = c~ and performed quenches to the fixed 
temperature T / T  c = 0.60. We analyzed the data in the same way as the 
molecular dynamics simulation summarized in the previous section. Espe- 
cially, we have calculated the coarse-grained radial distribution function 
g(r, ,r) which allows to define a mean cluster radius R0-). (8) 

MC snapshot pictures from version I are shown in the right column of 
Fig. 1 and show cluster patterns quite similar to the MD snapshots of the 
left column. 

The evolution of R(z)  for all three MC versions is plotted in Fig. 2 on 
a double logarithmic scale. MC version I yields two different growth 
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Fig. 2. Mean cluster radius R versus Monte Carlo time "r (in MCS/A) for the three MC 
versions (MC version I: squares, MC version II: open circles, MC version III: full circles. For 
details see text). Note the shift between lower and upper time scale. 



38 Koch and Liebmann 

regimes. In the first one (~- < 104 MCS/A,  lower scale) g(r,'r) does not 
scale, whereas good scaling is found in the later part of the second regime 
5 • 104 < ~- < 6 • 105 MCS/A.  The upper limit is caused by finite size 
effects due to the limited number of simulated particles. In the second 
regime R0-)ec r a, with a I = 0.25 + 0.01. These results are in good agree- 
ment with the findings for the binary alloy problem (7) on the square and 
simple cubic lattice. (For T~ T~ = 0.8 we also determined the growth law 
which was identical to the reported results for T / T  c = 0.6.) Different 
random start configurations caused only very small changes in the detailed 
behavior of g(r, ,c). 

For the MC version II, where the particles can jump into any vacancy 
in the system, the usual spatial oscillations in g(r,,c) are considerably 
reduced compared, e.g., to the results of MC version I. Especially for short 
times the first minimum in g, characterizing the depletion zone around 
clusters, (8) is very shallow and the obtained R0- ) differs considerably for 
different random start configurations. We observe no scaling behavior. A 
power law fit for R0" ) yields an exponent a H = 0.38 ___ 0.08. This is much 
larger than a~ due to the faster cluster growth. 

Finally, for MC version III, where the particles travel straight until 
they hit another one, the shape of g resembles the results of version I. 
Scaling is fulfilled approximately and the growth law can be determined to 
have an exponent of a m = 0.40 + 0.03. 

Summarizing this section, we find that the three MC kinetics in fact 
lead to very different dynamical behavior of the simulated system. These 
results will be analyzed and contrasted to the molecular dynamics results in 
the next section. 

4. D ISCUSSIONS AND C O N C L U S I O N S  

Summarizing the preceding two sections on molecular dynamics and 
Monte Carlo results, we have found qualitative agreement for the respective 
cluster growth patterns during the phase separation process. This is demon- 
strated in Fig. 1, where the snapshot pictures of the molecular dynamics 
simulations and of the MC simulations (version I) are compared. The 
neighboring pairs of figures are chosen such that the corresponding values 
of the mean cluster radius R agree. We also find characteristic power laws 
for the growth of R(t) in molecular dynamics and of R(~-) in all versions of 
Monte Carlo simulations for the late-time regimes. Additionally, for molec- 
ular dynamics and MC versions I and Il l  we obtain scaling of the cluster 
radial distribution function in those regimes. 

These findings might lead to the impression that the overall behavior 
in all cases is very similar. However, a closer inspection of the obtained 
results reveals distinct differences. However, we want to emphasize that the 
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differences between the molecular dynamics results and those of the MC 
simulations are not only due to the different numerical procedures but also 
due to the different physical systems studied. Molecular dynamics simula- 
tions have been performed for a continuous system with Lennard-Jones 
interaction of the atoms, while Monte Carlo simulations were done for a 
discrete Ising system with nearest-neighbor interactions. Nevertheless, one 
could be led to the conclusion that these differences should not influence 
the long-time behavior of the spatial decomposition process. This conclu- 
sion is not supported by our findings. 

A first hint of the differences may be seen in the last two pairs of 
snapshot pictures in our Fig. 1. In these snapshots the molecular dynamics 
pattern (left side) seems to consist of more isolated clusters than the MC 
pattern. This is not obvious from the pair correlation function; one would 
have to analyze higher-order correlation functions for quantitative results. 
The cluster pair correlation function looks very similar in both cases due to 
the involved spherical averaging and the fact that the individual clusters 
contribute proportional to their respective number of atoms, thus effec- 
tively suppressing contributions from the smaller ones. 

Even the details of the spatial structure of g(r) are very similar in the 
molecular dynamics and MC version I simulations. However, already in the 
MC version II the spatial variations of g(r) are strongly reduced. This 
demonstrates clearly that different MC versions, which nevertheless yield 
the same equilibrium properties lead to different growth patterns. 

We now discuss the time-dependence and the scaling of the cluster 
distribution function g(r, t) or g(r, T), respectively. In Table I we summarize 
the exponents of the growth laws for R in the late-time regimes. 

In molecular dynamics R ec t a, where t is the physical time, whereas in 
MC R ec r a, where ~- is the "MC time" measured in MC steps per atom. 

Let us first discuss the molecular dynamics result. 
Explicit theoretical calculations of the power law can be performed on 

the basis of a Lifschitz-Slyozov analysis (14) of the appropriate dynamical 
equations. This has been done in Ref. 8. However, the basic results of this 
analysis can be understood easily, once one knows that a power-law 
behavior is an adequate description. 

One analyzes the dynamic equation for the growth of the mean cluster 

Table I. 

Simulation Exponent a 

MD 0.50 • 0.02 
MC(I) 0.25 • 0.01 
MC(II) 0.38 + 0.08 
MC(III) 0.40 • 0.03 
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radius, which has the form 

d R c ~  1 ( 1  1 )  
at Rc R 

where Rc(t ) is the critical cluster radius, which is essentially inversely 
proportional to the supersaturation in the gas phase. 

If this equation is to be satisfied by an ansatz of the form 

R cc t a 

we get 

R~(t) oc R ( r )  

and 

a = 1 / (y  + 2) 

In the one-component system at constant temperature 7 = 0 and thus 
a -- 0.5, and for constant energy ~ = 1 and a = 0.33, (8) as is the case in the 
analysis of phase separation in binary mixtures in the original Lifshitz- 
Slyozov analysis. O4) Thus, the molecular dynamics results are understood 
to be in good agreement with theoretical predictions. 

Concerning the Monte Carlo results, it is obvious from Table I that the 
three different versions yield different exponents a. These differences are 
only due to the different states available for a randomly chosen atom to be 
displaced. For version I, where only nearest-neighbor jumps are allowed, 
we have a plausibility argument supporting the value of a = 0.25. We see 
that at late times the clusters grow only by absorbing molecules from the 
gas phase, which have to be provided by the smaller clusters. Thus the 
effect governing the temporal behavior is the "random walk" of the 
monomers through the set of vacant lattice sites between the clusters. The 
MC time ~- to trespass the distance l between two clusters will be propor- 
tional to l 2. In the molecular dynamics simulations on the other hand, the 
atoms in the gas phase move linearly between the collisions, the time to 
travel a distance l is directly proportional to l as long as l is smaller than 
the mean free path in the gas phase. Elimination of l from these relations 
leads to ~-cc t 2. Thus the result R(~-)cc ~.0.2s of MC version I will be 
consistent with R(t )c~  t ~ of the molecular dynamics simulations. It is not 
entirely clear to us how far this agreement is only fortuitous, but neverthe- 
less it explains why the growth law of R in the MC simulations version I is 
slower than that of the molecular dynamics simulations. 

Two final conclusions may be obtained from the comparison of the 
different simulations of spinodal decomposition: 

(i) In molecular dynamics the time evolution in the density pattern is 
uniquely determined by the physical properties of the simulated system. 
This is not the case in MC, when stochastic kinetics are used which only 
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guaran tee  the correct  equ i l ib r ium values.  To ob ta in  reasonab le  d y n a m i c  

results,  add i t i ona l  res t r ic t ions  mus t  be imposed  on the e lementa ry  s tochas-  
tic process  to mimic  the t rue phys ica l  t ime-deve lopment .  

(ii) Sp inoda l  decompos i t i on  in con t inuous  o n e - c o m p o n e n t  systems 
exhibi ts  growth  rates d is t inc t ly  di f ferent  f rom t w o - c o m p o n e n t  systems. The  
necessary  next  step for  a sys temat ic  compar i son  would  be to pe r fo rm M C  
a n d  molecu la r  dynamics  s imula t ions  for  the same system. This  would  al low 
to ext rac t  more  detai ls  a b o u t  the d y n a m i c  na tu re  of the M C  s imula t ion  
method .  
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